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Abstract

A new numerical approach for modeling a class of flow—structure interaction problems typically encountered in biolog-
ical systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incom-
pressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed-boundary method is
devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model
flow—structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation
on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canon-
ical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration
during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well
as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as
well as vocal fold dynamics are presented.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Flow-structure interaction (FSI) is a common phenomenon in biological systems. Typical examples related
to biomedical engineering include the cardiovascular system (heart valves and arteries), and the larynx. The
ability to computationally model the flow—structure interaction in these systems could help us understand
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the underlying biophysics, investigate pathologies, and potentially advance medical treatments. Structural
flexibility and flow—induced deformation is also ubiquitous in nature. For instance, flow—structure interaction
is a key feature in biological locomotion including fish/mammalian swimming [1] and insect/bird flight, and
the ability to model this interaction is important in learning the underlying physics of these modes of
locomotion.

One of the main challenges in developing such biophysical models is handling of the complex and moving
anatomical geometries. The finite-element method (FEM) is the traditional way of dealing with complicated
computational domains (e.g. [2,3]). However, grid generation and solution of the associated algebraic equa-
tions can be quite expensive. Furthermore, biological configurations present a singularly difficult proposition
for such methods given the highly complex geometries, motions, deformation and material properties that are
usually encountered in these configurations.

In recent years, the immersed-boundary (IB) method has gained popularity in computational fluid dynam-
ics (CFD) for handling complex and/or moving boundaries. In the IB method, a structured, usually Cartesian,
grid which does not conform to the flow boundary is used for discretizing the governing equations [4]. Recent
review on the IB method and its variants can be found in Mittal and Iaccarino [5]. Compared to the boundary-
conforming structured and unstructured methods, the IB method has the advantages of simple grid generation
[4] and ease of incorporating multigrid [6] and domain-decomposition based parallel algorithms [7].

The Cartesian grid based IB method has also been applied in the computation of solid-mechanics. For
example, Sethian and Wiegmann [8] used a type of IB method to solve linear clastostatics on arbitrary
two-dimensional domains and the solution was used in an optimization procedure to iteratively improve struc-
tural design. In their approach, a level-set method was used to represent the boundaries of the solid body, and
an immersed-boundary method based on Li and LeVeque [9] and Li [10] was used to prescribe the disconti-
nuities in the governing equations across the solid/void boundary. This approach allowed them to change the
geometry and topology of the structure during the optimization process without modifying the underlying
grid.

Udaykumar and coworkers [11,12] used an Eulerian method to simulate high-speed multi-material impact.
Their method was based on a fixed Cartesian grid and a sharp-interface IB method was used to deal with large
deformations of the material-material and material-void interfaces. The approach was particularly attractive
in that the issues associated with severe mesh distortion and entangling, which would be faced by conventional
body-conformal methods, can be circumvented.

In this paper, we present a Cartesian grid based approach for modeling a class of FSI problems typically
encountered in biological applications. More specifically, we employ the previous sharp-interface IB method
[13,7,14] to solve the Navier—Stokes equations that govern the flow, and devise a new IB formulation that
allows us to compute the linear elastodynamics of complex three-dimensional (3D) structures. FSI is accom-
plished by operating the two solvers in a coupled manner. Compared to the IB methods described in [8,11,12],
our method can be used for simulating dynamics of linearly elastic or viscoelastic solids as well as flow-induced
deformation of such solids. The FSI solver is also designed to solve two- as well as three-dimensional problems
and is therefore very well suited for high-fidelity modeling of biological configurations.

Although the IB method we present here for the 3D linear viscoelasticity is inspired from the approach
developed in the context of the fluid dynamics by Mittal and coworkers [13,7,14] and therefore bears some
similarity to that approach, the implementation is significantly different, especially with regard to the treat-
ment of the traction boundary condition which is a unique feature of solid dynamics. This issue is discussed
in detail in Section 2. It should also be noted that this method is different from the IB method described in Li
and coworkers [9,10] and Sethian and Wiegmann [8]. In their methods, the solution experiences discontinuities
across the singular interface immersed in the domain, and the finite-difference formulas involving the nodes
across the interface were corrected by using Taylor’s series around the interface and taking into consideration
of the discontinuities. In contrast, our method is based on a ghost-cell methodology where the ghost-node
value is a smooth extrapolation from the solution on the physical side of the boundary. There is no discon-
tinuity involved at the boundary in our method. Furthermore, those methods require derivation of the correc-
tion term in the finite-difference formulas near the boundary, which in our view is inconvenient if applied to
the 3D elasticity. In comparison, the finite-difference equations in our method are standard formulations and
are thus much simpler.
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Finally, the current method differs from the extended IB method or immersed finite-element method pro-
posed in [15,16] in that, in our formulation, (1) there is no body force imposed at the fluid/solid boundary or
within the solid body, (2) only Cartesian meshes are used.

1.1. Modeling of laryngeal aerodynamics and vocal fold vibration

A particular focus of the current work is developing a computational modeling capability that can capture
the physics of phonation which refers to the process of sound production in the larynx. Phonation is essen-
tially a result of flow-induced vibration of the vocal folds (VF). Fig. 1(a) shows a coronal (front-to-back) view
of larynx obtained from a computed tomography (CT) scan. The image clearly shows the two vocal folds that
protrude into the airway inside the larynx. During phonation, the two VFs are brought together at the midline
and tightened so as to obstruct the passage of air from the lungs to the vocal tract above. Air is then forced
through this laryngeal passageway (called the “glottis”) due to buildup of the pressure inside the lungs, and
this results in sustained flow-induced vibration of the VFs during which air is expelled into the vocal tract as
an oscillatory jet called the “glottal jet”. This sustained vibration and the oscillating airflow give rise to the
generation and propagation of sound, and this process is called phonation. When attention is focused on
the VF vibration and the jet behavior, air compressibility is often neglected and an incompressible flow can
be assumed. The vocal fold itself has a complex structure as shown in Fig. 1(b), and the various constituents
of the VF are known to play distinct roles in the vibratory dynamics [18].

The dynamics of the vocal folds and glottal jet are difficult to examine in experiments. Thus, despite a sig-
nificant number of in vitro and in vivo studies [18], much remains to be understood regarding the biophysics of
phonation. For example, little has been known about the unsteady vortex motions in the supraglottal region
and their effect on the vocal fold vibration as well as the sound generation. A mathematical model that
describes the dynamical process of phonation could complement experimental studies thereby helping us
understand the physics of voice production. It may also have potential significance for examining certain voice
pathologies and treating voice disorders.

In the past, a number of mathematical models of different complexity have been developed for describing
the FSI process of phonation. The first study that attempted to examine the phonation physics using a fully
coupled FSI approach was that of Ishizaka and Flanagan [19]. In this pioneering study, the VFs were modeled
as two lumped masses and the air was treated as a one-dimensional inviscid flow. The model was extremely
simple but was able to successfully demonstrate sustained flow-induced vibrations. Subsequent to this,
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Fig. 1. (a) A CT scan image of the human larynx (coronal view) taken at 105 mm from the subject’s back, where the light regions represent
tissues or cartilage, and the dark regions represent hollow spaces. (b) Schematic of the histological layers of the vocal fold of a human adult
adapted from [17].
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lumped-mass models with more degrees of freedom were proposed and employed, e.g., the sixteen-mass model
used by Titze [20]. Low-order models have been used with varying degrees of success to study some specific
features of phonation. For example, the chaotic behavior in the VF vibration was examined by Jiang et al.
[21] using a two-mass model.

Continuum models of the vocal folds have been employed in recent years. A two-/three-dimensional hybrid
FEM model of VFs was introduced by Alipour et al. [22] where the VF tissues were assumed to have three
layers and each layer was transversely isotropic and governed by linear viscoelasticity. Coupling this model
with a two-dimensional (2D) flow solver, Alipour and Scherer [23] studied the bulging effect of the medial sur-
face of the VFs due to glottal adduction. Rosa et al. [24] presented a fully 3D model in which dynamics of the
three-layer and transversely isotropic VFs was coupled with an incompressible flow solver to simulate the FSI.
In addition, they included the contact force during the VF closure, and the false vocal folds and laryngeal ven-
tricles were incorporated into their simulation to better approximate the physical geometry. Both the solid
dynamics and the fluid dynamics were solved using the FEM methods. Using the model, the authors examined
the phase difference in the VF tissue deformation and the effect of the false VFs on the pressure distribution
over the laryngeal surfaces.

Tao and Jiang [25] also recently considered a 3D VF model. Combining the model with Bernoulli’s law,
they investigated the anterior—posterior biphonation (simultaneous occurrence of two independent fundamen-
tal frequencies during phonation) phenomenon. Thomson et al. [26] used both 2D FEM simulations and
experiments on a synthetic VF model to study the energy transfer from the airflow to the VF during the
FSI. Hunter et al. [27,28] used numerical simulations to describe the dynamics of the VF abduction and
adduction — the posturing movements of the VFs during phonation aside from their vibration.

All of the above models have been useful in describing the basic vibratory function of the VFs and some
particular aspects of the phonation process. However, for a more detailed analysis of phonation, higher-fidel-
ity models that can incorporate more realistic geometries and provide higher accuracy both in the fluid and
solid dynamics are needed. Furthermore, in order to examine patient-specific configurations, which is key
to effective treatment, an efficient method is needed for rapid modeling of a variety of configurations. In
our research, we attempt to develop a continuum mechanics based methodology which can resolve a large
range of temporal and spatial scales in both the VF vibration and aerodynamics. This model will be able
to capture details of the vibratory characteristics as well as the flow behavior, and thus allow us to gain a dee-
per insight into the physics of phonation. The model is expected to eventually be used for improving the out-
come of laryngeal surgeries. For example, in medialization laryngoplasty, a surgical procedure used to treat
vocal fold paresis and paralysis, a uniquely configured structural implant is inserted into the diseased VF
to improve its vibratory characteristics [29]. A high-fidelity computational model could potentially help sur-
geons predict the effect of the implant and possibly improve the success rate of this procedure [30]. This indeed
is the long-term goal of the current effort.

In this paper we describe a crucial step toward that goal. We have developed a new Cartesian grid based
immersed-boundary method to simulate the elastodynamics of complex elastic and viscoelastic solid
structures. This solver is coupled with an existing IB method that solves the incompressible Navier-Stokes
equations. This combined method allows us to model FSI with complex geometries with relative ease. In
Section 2, we describe the IB method for general viscoelastic solids subject to linear deformation. The
method is validated and its accuracy is tested using a canonical problem and the grid refinement in Section
3. In Section 4.1, we apply the IB method to the problem of phonation and compute the vibration modes
of a prototypical 3D VF. In Section 4.2, we couple the method with an immersed-boundary flow solver
to simulate the flow-induced VF vibration in two dimensions. Summary and conclusions are given in
Section 5.

2. An immersed-boundary method for linear viscoelasticity

In the following, we describe the salient features of the numerical method developed to solve the dynamical
equations of a linear viscoelastic solid. We first describe the underlying methodology for solving the governing
equations on a Cartesian mesh and then describe how the appropriate boundary conditions are applied over
the immersed boundaries that do not conform to the Cartesian mesh.
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2.1. Governing equations

Consider the unsteady Navier equation that governs the dynamics of a linear, viscoelastic solid
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where p, is the density of the solid, u; is the displacement, and ¢;; is the stress tensor. The body force is ignored
in the equation. In general, if the Kelvin—Voigt model [31]1is assumed for the viscous effect, the constitutive law
between the stress and the strain can be written as

O-ij - Cijmnemn + nijmnémm (2)

where Cj,, is the elasticity tensor, 7, is the damping coefficient, &,,, = (0u,,/0x,, + 0u,/0x,,)/2 is the strain
tensor, and the dot represents the time derivative. Note that in this paper, we use x, y and z as well as the
indicial values 1, 2 and 3 interchangeably for ease of discussion.

If the material of the solid is transversely isotropic and elastic, then the constitutive relationship is reduced to
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where the xy plane is the isotropic plane, E,, G,,, and v, are the Young’s modulus, shear modulus, and Pois-
son ratio in the xy plane, respectively, E., G.,, and v,. are the Young’s modulus, shear modulus, and Poisson

ratio in the z-direction, respectively, and these are related as follows:
Ep Ypz _ Vap

Gy=-rt _, -T2
" 2(1+v,) E, E.

The 6 x 6 matrix in (3) is the compliance matrix. The principal stresses are related to the strain by
Oxx kxx kxy kxz Exx
oy | = | kn ky ke &y | (4)
O-ZZ kZX ka kZZ 8ZZ

where k; are the elements of the inverse of the 3 x 3 partition at the upper left corner of the compliance
matrix.

A second-order, implicit Crank—Nicolson scheme is employed for temporal discretization of (1) which leads
to the following semi-discrete equation:
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where the superscripts represent the time levels. The above equation can be rewritten as
A D . A D i

n+1 ymn \ p41 n n—1 ymn '\ n—1
A2 0 (] g O 20, ] 6
ul 2ps axj [( L + A[ Smn uz uz + 2ps axj ] At Smn ( )

which shows that the discrete equation has to be inverted at each time step. Note that for static problems, we
simply solve the equilibrium equation
0
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All the spatial derivatives in the governing equations are approximated using a second-order, centered
finite-difference scheme. For example, the 0o.,/0x term in Eq. (1) for a transversely isotropic and elastic mate-
rial, on a uniform Cartesian grid would be discretized as follows:

aaxx _ a(kxx'gxx + kxy’gyy Jr kXZSZZ)

Ox ox
o L k uxi+1,f.k - uxi.j.k _k uxi.,zk - uXi—l.J.k
Ax | itk Ax Hiik Ax
1 k Uy o — Wyiinjoix k Uy, s — Wyijois
+ DAx | ik 2Ay T My 2Ay
+ 1 k uZiJrl.j,kJrl - uZHl.J.k—l iy uzi—l.j,kJrl T Yz k0 (8)
2Ax Lk 2Az Tl 2Az ’

where Ax, Ay, and Az are the grid sizes in the x, y, and z-directions, respectively, kxx#] . is the average of k.,
i+, ikt

and k., ,, and so on. Similar expressions can be obtained for the other derivative terms. A key point to note

is that the discretized equation has a 9-point stencil as shown in Fig. 2 for 2D problems and a 19-point stencil
for 3D problems.

2.2. Boundary conditions

The viscoelastic solids under consideration are subject to two types of boundary conditions: a displacement
boundary condition

u, = Uh (9)
where U, is the specified boundary displacement, and a traction boundary condition
oyn; = fi, (10)

where #; is the surface normal pointing out of the solid, and f; is the surface traction as shown in Fig. 3. In the
body-conformal grid methods, the boundary conditions are usually easy to apply and do not introduce any
significant complexity into the numerical methodology. With a non-body-conformal Cartesian grid such as
the current one, the imposition of these boundary conditions is not trivial and the methodology adopted to
implement these boundary conditions is the crux of the current immersed-boundary method.

2.3. Immersed-boundary formulation

Inspired by the sharp-interface IB method for CFD described in [13,7,14], we devise a method to solve the
Egs. (1)-(10) with complex geometries on Cartesian grids. The method is described here mostly within the con-
text of a 2D problem, but as will be demonstrated later in the paper, the method is generally applicable to 3D
problems. As shown in Fig. 3, the solid body is immersed in a Cartesian grid. For cells inside the solid which
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Fig. 2. The stencil that is used in the IB method to discretize the field equation at the collocation point (i,/). The nodal points involved in
the stencil are marked with filled circles, while other nodal points are marked with unfilled circles.
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are away from the boundary, the governing equations are discretized as shown in Fig. 2 where the displace-
ment vector u; is defined at the cell centers.

Near the immersed-boundary, the governing equations need the boundary conditions, and since the
immersed-boundary does not conform with the grid, a methodology is needed to incorporate the influence
of the boundary conditions on the governing equations. Following [13,7,14], we employ a ghost-cell method-
ology for imposing the boundary conditions. The basic idea behind this method is as follows

1. We first identify so called ‘“‘ghost-cells” which are the cells outside the solid that lie within the
computational stencil of the cells inside the solid. In Fig. 4 the ghost-cells are indicated with square
symbols.

2. We then devise a numerical prescription for the ghost-cell nodal values to incorporate the boundary con-
dition in the vicinity of the ghost-cell.

3. Once this is accomplished, the governing equations for the cells inside the solid can be solved in a coupled
manner with the numerical prescription for the ghost-cell values which leads to imposition of the boundary
conditions on the immersed-boundary.

In the current solver, the surface of the immersed body is represented by a grid made up of triangular ele-
ments. The use of the triangular mesh gives us a flexible and robust way of representing highly complex geom-
etries and also facilitates computation of the surface quantities such as the local normals. The methodology
used to identify the ghost-cells (denoted as ‘GC’ in Fig. 4) on a Cartesian grid for such immersed bodies is
described in previous publications [13,7] and will not be discussed here. The focus of the current discussion
will be the technique used to incorporate the effect of the displacement and traction boundary conditions
within the context of the current immersed-boundary methodology.

Regardless of the type of boundary condition to be applied, we first identify a location on the immersed-
boundary, unique to each ghost-cell, where the boundary condition will be satisfied. A natural choice for this
location is the point on the immersed-boundary which is closest to the given ghost-cell, and this is determined
by computing the normal body-intercept (denoted by ‘BI’) for the ghost-cell. With the point determined
uniquely, we now turn to describing the methodology for imposing the different boundary conditions at this
location using the ghost-cell methodology.

The displacement boundary condition is the more straightforward of the two, and for this we employ a
method that is similar to what has been done in the context of fluid dynamics [7,13,14]. The normal segment
from the ghost-cell to the body-intercept point is extended into the solid to a point called the image-point
(denoted by ‘IP’) such that the distance between GC and BI is the same as the distance between IP and BI.
Thus, the BI point lies at the center of the segment between GC and IP (Fig. 4).
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Fig. 4. Schematic of the immersed-boundary method on a Cartesian grid for solving the linear viscoelasticity. The bold curve represents
the boundary of the solid. The stencil is shown in (a) for the displacement boundary condition and in (b) for the traction boundary
condition.

Next, we identify the four (eight in 3D) nodes that surround the image-point (the shaded square region
shown in Fig. 4(a)) and express the variable under consideration (for discussion sake, we consider a generic
variable, ¢) in terms of a bilinear (trilinear in 3D) interpolant of the form

B(x,y) = axy + 00X + 03y + 04, (11)

where o’s are the weights that can be expressed in terms of the values at the surrounding nodes. The final
expression for the value of the variable at the image-point can be written as

b = Zﬁi¢ia (12)
i=1

where ¢, is the value of ¢ at the ith vertex and f; is the interpolation weight. The integer M is equal to 4 for 2D
simulations and 8 for 3D simulations. Note that the interpolation may involve the ghost-node of interest or
other nearby ghost-nodes, but as pointed out in [7], this does not cause any particular problem for the meth-
odology. The Dirichlet-type boundary condition is then enforced at the body-intercept point using a second-
order approximation along the surface normal,

bge + bip = 204, (13)

where ¢gc denotes the variable value at the ghost-node and ¢g; denotes the boundary condition at the bound-
ary interception. The final equation that governs the value at the ghost-node can be written as

boc+ > _ i, = 2. (14)
i=1
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Thus, the value at the ghost-node is coupled with the adjoining solid and in some cases other ghost-nodes, and
is also directly connected with the boundary condition at the body-intercept point. These equations for the
ghost-nodes can then be solved in a fully coupled or loosely coupled manner with the governing equations
for the solid on the interior nodes.

The traction boundary condition for solids, Eq. (10), is more complicated since it involves both the normal
and tangential gradients of the displacement vector, and as will be shown below, its application on the solid is
a unique feature that has to be developed for the current immersed-boundary method. The problem within the
current context comes down to impose o;n, = f; at the body-intercept point with adequate accuracy. The meth-
odology adopted should also be robust and amenable to a fast solution procedure. To illustrate the complexity
of this problem, we assume that the solid is isotropic, linearly elastic and has deformation only in the xy plane
(i.e., a plane-strain condition). Transforming the coordinate system into the local orthogonal coordinates
involving the surface normal and tangential vectors as shown in Fig. 4(b), the traction condition becomes

aun auf aun Gug
nn:kxxi kx';: ns “n:Gx* ~z - = Je. 15
O =Ry TR T y(©§+6n> g "

where the subscripts, n and £, represent the normal and tangential components of a vector.

It can be noted now that the traction boundary condition not only involves partial derivatives in the normal
and tangential directions, it also couples the various components of the displacement vector. One possible
approach to impose (15) is to draw analogy from the Neumann boundary condition treatment developed
for the pressure Poisson equation in CFD [13,7]. In this method, we start with a bi- or tri-linear (in 3D)
approximation for the variable at the image-point and then approximate the normal derivative of a generic
variable, ¢, using the following second-order accurate, central-difference formula

% ¢GC - ¢IP (16)

only, AL,
where A/, is the distance between GC and IP.

For the tangential derivative, 0¢/0¢, at the BI, we may again use a bilinear (as in Eq. (11)) or trilinear inter-
polant for the variable in a region around the body-intercept point. However, this approach leads to a number
of problems. First, the body-intercept might not lie inside the square or rectangle formed by the four nodes
that surround the image-point. For such cases, the four nodes surrounding the body-intercept point may
involve a number of ghost-nodes. This situation is illustrated schematically in Fig. 4(b) where three of the four
nodes surrounding the BI point are ghost-nodes. This has two deleterious effects: it strengthens the coupling
between the ghost-cell under consideration and neighboring ghost-cells, and diminishes the coupling between
this ghost-cell and the interior of the solid. This in turn has a negative impact on the convergence properties of
the successive over-relaxation (SOR) iterative solver used for obtaining the solution of the governing equa-
tions. The bilinear interpolation can also lead to estimates of the tangential derivative that are of reduced
accuracy. Accurate estimation of the tangential derivative requires an interpolation scheme that incorporates
substantial information from regions that are located tangentially on either sides of the body-intercept point.
However, in the current bilinear interpolation, most of the points involved in the interpolation are located in a
region that is nominally normal to the BI. Thus, approximations to the tangential derivative obtained from the
bilinear interpolation scheme described above can be inaccurate.

Thus, a method is needed for the traction boundary condition which is accurate, robust, and does not neg-
atively impact the convergence properties of the iterative solution procedure. Here we describe a methodology
which has been developed to handle this boundary condition. Motivated by the explicit jump immersed-
boundary method described in [8,10], we introduce a two- (or three-dimensional), third-order polynomial,
@, to approximate the generic function ¢ in the neighborhood of the BI point, (xo, yo,Zz0),

3

3
Q{)()AC,)A/,Q) ~ ¢(5€75}72) = Z Z clﬁ/l)%ij/2]7 l+]+ l < 37 (17)

3
=0 j=0 i=0

where ¥ = x — xo, y = y — ¥, Z = z — 2y, and c¢;; are unknown coefficients. For 2D problems, there are 10 coef-
ficients, and for 3D problems, the number of these coefficients is 20. To determine c;;, we first draw a circle (or
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a sphere in 3D) of radius R centered at the point (x, vo, zo) as shown in Fig. 5, and select N nodes enclosed by
the circle/sphere. The polynomial @ is then required to satisfy a weighted least-squares error criterion. That is,
c;; are chosen to minimize the error € given by

=3 W 2a) — DRI 2] (18)
n=1

where (%,, V., Z,) is the nth data point, and w,, is the weight function. For the least-squares problem to be well
posed, we require N > 10 for 2D cases and N > 20 for 3D cases. For each BI point, we adaptively adjust R so
that the required number of data points are included. Typically, the circle/sphere will contain solid nodes and
ghost-nodes as shown in Fig. 5. Except for the ghost-node associated with the BI point under consideration,
we choose not to include any of the other ghost-nodes into the data fitting scheme. This removes any direct
coupling between the ghost-nodes and is essential to ensure robust convergence in the iterative solution pro-
cess. Thus, the final set of nodes included in the function approximation scheme are the ghost-node under con-
sideration and the N-1 solid nodes. For the particular case shown in Fig. 5, the nodes included in the
approximation are shown with crosses in for a 2D case.

A weight function needs to be chosen to complete the prescription, and here we follow the work of Li [10]
and use the following cosine weight function,

W, :% {1 + cos (n;’,,)} (19)

where d, = \/x* + J% + 22 < R is the distance between the nth data point and the body-intercept. The exact
solution to (18) is then given in a compact form,

c=(WV)'W¢ = (VIW2V) 'VIW2p, (20)

where L represents the pseudoinverse of a matrix, the vector ¢ contains the coefficients ¢;;, the vector ¢ con-
tains the data ¢(%,,7,,2,), W and V are the weight and Vandermonde matrices given by

2 2 2
I xi yw z1 x{ ¥ z

o

n

W= . ., V=11 x, y, z x> ¥y 22 ... (21)

Wy 2 2

2
I xy Yy zv Xy Yy 2y

Note that V has the dimension of N x 20 in 3D and N x 10 in 2D. Given the geometry of the body and the
grid, ¢;; can be written as a linear combination of ¢(%,,J,,2,) based on Eq. (20).

Flow/Void

Ghost—cell + Data point

Fig. 5. Treatment of the traction boundary condition.
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For every ghost-node associated with the traction boundary, three polynomials are obtained by solving the
data fitting problems to approximate the three components of the displacement u;, and thus the displacement
gradient tensor Ou,/0x; at the BI point is obtained in terms of ¢;; by differentiating the approximating polyno-
mials at (%,7,2) = (0,0,0) analytically,

09 0P 0P

= €100, _6 = €010,

= Coo1 - (22)
(0,0,0) 0z (0,0,0)

Ox (0,0,0)
Substituting the expressions and Eq. (20) into the traction condition o;n; = f;, we obtain a linear equation
expressing the boundary condition at (xg, Vo, zo), and the equation involves the displacements u; at the data
points including the associated ghost-node.

Discretizing Eq. (6) at Ny interior nodes in the solid body using the finite-difference scheme, we obtain (for
3D) 3N linear equations for the displacement ;. If there are totally Ng ghost-nodes, then 3Ng complemen-
tary equations are obtained by imposing either displacement or traction boundary condition at the BI points
corresponding to the ghost-nodes using the aforementioned methodology. The assembled linear system can be
written in a compact form

o ael L] =13 @
Ay Ap Ug S

where uy and ug are vectors encapsulating the displacements at interior nodes and ghost-nodes, 4;; are matrix
partitions arising from discretization, r is the right-hand side of (6), and s is the vector encapsulating the pre-
scribed boundary displacement U; and the external force f; at the BI points. Note that for static problems, a
system similar to (23) is obtained except that r = 0 for these problems.

Eq. (23) is solved in an iterative manner wherein the interior and ghost-node values are updated in a
sequential manner until convergence. This method is notionally described as follows:

A]] . u;k) =r— A]z . ugfl), A22 . ll(({j) =S — A21 . ll%k) (24)

?

where the first equation is the update of the interior (solid) nodes and the second is the update of the ghost-
nodes. In the above equations, the superscript k represents the iteration level. In present paper, we use the
point-SOR method to solve the first sub-equation. Other iteration methods, such as line-SOR, BiCGSTAB
and GMRES (e.g. [32]), could also be implemented in a straightforward manner if needed. The second
sub-equation is also solved by updating each ghost-node using the Gauss—Seidel method and typically requires
only a few iterations.

In summary, the current method does not compute any explicit jump-conditions as in [8] since it does not
treat the body surface as a discontinuity in an otherwise continuous field. Rather, ghost-nodes are employed to
impose the boundary conditions precisely at the exact location of the boundary. Thus the current method can
be considered a ““sharp-interface” method within the lexicon of the immersed-boundary methods [5,33,34].

2.4. Formulation of eigenvalue problems

The present immersed-boundary method may be also be used to formulate an eigenvalue problem for an
elastic solid which is an extremely useful feature for analysis of solid dynamics. For this analysis we assume
that Eq. (1) is subject to homogeneous boundary conditions and zero damping, and its solution has the form
u(x, ) = u(x)e'" where 1 is the eigenfunction encapsulating the three components of the displacement vector
at all the interior nodes and ghost-nodes, i is the imaginary unit, and o is the eigenfrequency. Substituting this
solution into (1), we may then write the discrete version of this equation in a matrix form as

A A u I 0 i
ol Ll =l o] L) &
A3 A4 UG 0 0 UG
where uy, Ug are the displacement eigenmodes at the interior nodes and ghost-nodes, respectively, and A; are

matrices arising from the discretization. It should be noted that the second line of the equation, which encap-
sulates 3Ng sub-equations, corresponds to the displacement or traction boundary condition associated with
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each ghost-node. Eq. (25) poses a generalized algebraic eigenvalue problem which can be solved using stan-
dard algorithms such as the implicitly restarted Arnoldi method (IRAM) adopted by the software ARPACK
[35]. Note that for this software package, there is no need to store or process the large matrices in (25) during
the eigensolution process. Rather, only the matrix—vector product is needed, and this can be efficiently calcu-
lated on the Cartesian grid.

With the description of the method complete, we now present results of simulations conducted using the
immersed-boundary, solid-dynamics solver. The solver is designed to solve the equations for small deforma-
tions of linear viscoelastic solids. The solver can be used for solid-dynamics, eigenanalysis, as well as flow-

induced deformation of such solids, and example of each of these is provided in order to demonstrate the
capabilities of the solver.

3. Grid refinement study

The spatial accuracy of the linear-elastic solver as well as its fidelity is examined by computing the numer-
ical solution for a non-trivial geometry on different grids and comparing with a known exact solution. Here we
consider an infinitely long annulus with inner radius R; and outer radius R; as shown in Fig. 6(a). The outer
surface of the annulus is displaced in the radial direction by distance s, and the inner surface is either fixed (i.e.,
zero displacement) or free (i.e., zero traction). For both these conditions, an exact solution can be obtained if
we limit ourselves to a static, linearly elastic problem (e.g. [36]). In this case, the elastostatics is reduced to the
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Fig. 6. (a) Annular linear-elastic solid immersed in a Cartesian grid. The solid is subject to a constant radial displacement on its outer
boundary, and a traction-free or zero displacement condition is applied on its inner boundary. Results are presented for the traction-free
case. (b) Contours of the radial displacement computed using the immersed-boundary method, where the bold lines represent the solid
body. (c¢) The radial displacement as a function of r (solid line: exact solution; circles: numerical solution).
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Fig. 7. Error norms of the solution obtained using the immersed-boundary method for the plane-strain annulus case with (a) traction-free
inner surface and (b) fixed inner surface. The dash-dot line represents the second-order convergence rate.

axisymmetric plane-strain Lamé equation whose exact solution for the radial displacement d at radius r is
given by
A1 2vC
dr)=—-——-+—
(r) 2G r + P
where A = vE/(1 — v — 2v%), and G = E/(2 + 2v) are the two Lamé constants, E and v are the Young’s modulus
and Poisson ratio, respectively, 4 and C are two constants given by

(26)

2GRIR A
=, =501 on (27)
5 — Ry 2R;(1 —2v)
if the inner surface is fixed (zero displacement), or
2GRiR A
_ GRiR: c- (28)

TRr(-mR” R

if the inner surface is traction-free.

Fig. 6(a) shows the 2D Cartesian grid used for solving the elastostatics of the annulus, and Fig. 6(b) shows
the contours of the radial displacement in the xy coordinates obtained on a 96 x 96 uniform grid for the free
inner surface and £E=1, v=10.35, R, =1, R; =0.5, s = 0.05. The radial displacement function is shown in
Fig. 6(c) where it is found that the numerical solution has excellent agreement with the exact solution.

Fig. 7 shows the L, and infinity norms of the relative error of the solutions for both cases. The numerical
method clearly shows a second-order convergence rate as the number of grids is increased for both types of
boundary conditions, thereby confirming the formal accuracy of the solver.

4. Application to Phonation

Histologically, the vocal fold consists of the vocalis muscles and mucosa, and the mucosa is comprised of
the epithelium at the surface and the lamina propria below, as shown in Fig. 1(b). At the VF edge, the lamina
propria can be further divided into three layers: the superficial, intermediate, and deep layers. From a mechan-
ical point of view, these layers may be regrouped into three layers: the cover (the epithelium and superficial
layer of the lamina propria); the ligament (the intermediate and deep layers of lamina propria); and the body
(vocalis muscles) [17].

The geometrical model of the VF in the present study is shown in Fig. 8 where the undeformed VF proto-
type is uniform in the longitudinal direction (z-direction) in which the muscle fibers are aligned. The x, y and z
coordinates represent the vertical, lateral, and anterior—posterior directions, respectively, in terms of human
anatomy. The three layers in the cross section are illustrated in Fig. 8(b) and their geometries are roughly
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Fig. 8. (a) A 3D view of the vocal fold model. (b) The coronal section which consists of, from outside, the cover, the ligament, and the
body. The length unit is centimeter.

based on the anatomical data shown in Fig. 1. The details of the VF geometry are given in the Appendix. The
VF chosen for analysis is 1 cm in height, 0.99 cm in width, and 1.4 cm in length, which are nominal values for
adult humans [22,37]. We assume that the VF undergoes small deformations so that linear theory may apply.
This assumption is considered appropriate for phonation and has been employed in past studies (e.g. [22,24]).
Each of the three layers is assumed to be isotropic in the cross section transverse to the direction of the VF
muscle fibers.

4.1. Eigenmode analysis of vocal folds

We choose the material properties of each layer based on the values from Alipour et al. [22], and they are
listed in Table 1. Note that Alipour et al. [22] did not specify the longitudinal Young’s moduli, E. and, since
the longitudinal Poisson ratios were assumed to be zero in their FEM model, the effect of the VF stretching on
the deformation is ignored in their analysis.

Using the immersed-boundary method, we solve the eigenvalue problem in (25) for the VF prototype to
obtain four lowest eigenfrequencies. The anterior, posterior, and lateral surfaces of the VF shown in Fig.
8(a) are attached to the cartilage and have zero displacement. The remaining surface of the VF is assumed
to be traction-free. Since the eigenmode analysis does not involve any interaction between the two VFs, we
only conduct the eigenmode analysis for one VF and present the results for both by reflecting the results about
the central line of symmetry. The grid size of 20 x 20 x 12 is employed in the x, y and z-directions, and grid
sensitivity studies indicate that this relatively coarse grid is adequate for the current eigenmode analysis. The
present number of grid is significantly higher than that of Alipour et al. [22] where about 150 mesh points were
used. Fig. 9 shows the lowest two eigenmodes, mode-1 and 2, and their corresponding shape in the mid coro-
nal plane. The associated eigenfrequencies are 114 Hz and 125 Hz. As shown in the midplane, mode-1 primar-
ily entails an oscillation of the VF in the vertical direction, whereas mode-2 represents an oscillation in the
lateral direction. It should be noted that both modes produce significant opening and closing of glottis which
is the airway between the two VFs.

The next two modes, mode-3 and 4, are shown in Fig. 10. The eigenfrequencies associated with these modes
are 133 Hz and 144 Hz. The two modes represent more complex deformations in the vertical and lateral direc-

Table 1
Material properties of the three vocal fold tissue layers

1, (kPa) 1y (kPa) E. (kPa) v Vap ps (gfem?)
Body 1.05 12 31.2 